Estrogen-Mediated Upregulation of Noxa Is Associated with Cell Cycle Progression in Estrogen Receptor-Positive Breast Cancer Cells

نویسندگان

  • Wensheng Liu
  • Wendy M. Swetzig
  • Rajesh Medisetty
  • Gokul M. Das
چکیده

Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA) to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP) assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0)/G(1)-phase and significantly delayed the G(1)-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation between Estrogen and Progesterone Receptor Status with p53, Ki67 and Her-2 Markers in Patients with Breast Cancer

Background: Breast cancer is the most common cancer in women, containing approximately one third of all illnesses in women. Assessment of molecular markers is valuable in predicting the outcome of disease and decision making for optimal treatment. The purpose of this study was to determine the relationship between estrogen and progesterone receptors with Her-2, Ki67, P53, and clinicopathologica...

متن کامل

ADENOSINE DEAMINASE ACTIVITY IN ESTROGEN RECEPTOR POSITIVE AND NEGATIVE HUMAN BREAST CANCER CELL LINES

 ABSTRACT Background: The aims of this study were to assay the activity of adenosine deaminase (ADA) in estrogen receptor positive (MCF-7) and negative (MDA-MB468) breast cancer cell lines. Methods: MDA-MB468 and MCF-7 breast cancer cell lines were cultured in complete medium, striped serum with and without 0.0 1~-LM diethylstilbestrol (DES), complete medium in the presence and absence of 111M ...

متن کامل

تأثیر هورمون استروژن بر میزان پروتئین p53 در رده سلولی T47D سرطان پستان

Background: Breast cancer is one of the most common cancers in women. Nearly 30% of breast cancers are hormone-dependent, and these hormones comprising estrogens influence progression of breast cancers. It is now widely recognized that p53 may be the most frequently mutated protein in breast cancer. High levels of p53 protein are a common feature of many human malignant cancers. Given that, T47...

متن کامل

Bioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer

Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...

متن کامل

Bioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer

Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011